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1. Introduction

I begin by reviewing some relevant literature regarding covariance functions. A
correlation function is a covariance function that has been normalized to have value one
at the origin, and many properties are common. [ will generally use the term covariance
function unless there is a specific interest in having value one at the origin. Within the
past dozen years or so there have been a number of relevant publications regarding the
construction of covariance functions in two and three dimensions, tests for the requisite
properties, and conditions on the parameters for certain functions.

In general I will not be specific about the precise mathematical properties various

functions will need to possess, but suffice to say that if an expression involves an
integral, for example, it is assumed the integral exists. A function is a valid covariance

function provided it is positive definite (PD). A PD function can be characterized in

several ways. Suppose C is a function defined on R?. Then C is PD if (1) for any

nonzero function g with finite support defined on R¢, JC(s— 1)g(s)g(t)dsdt=0, or (2)
9{4

for any finite set of points s,,i = 1,...,n and values ¢,,i =1,...,n, not all zero, the

quadratic form 22 C(s; —s;)t;t; 20, (3) the Fourier transform of the isotropic
i=1 j=1

function C(lsl) is nonnegative. In (1) and (2), if the equality can be attained the function
C(s) is said to be positive semi-definite.

The last property is part of Bochner’s Theorem (see, e.g., Priestly, [22]), which
characterizes PD functions in that way. An excellent reference on PD functions is
Stewart [27]. The set of isotropic covariance functions (in any dimension) can also be

characterized as a probability mixture of Gaussian correlations (Matérn, [20]), as given

oo

by J'e"zxzdF (f)where F(t) is a one-dimensional cumulative probability distribution

—o0

function. For certain choices of F'(t) one can easily obtain some families of covariance

functions.

There are a number of simple building blocks for PD functions, as well as some easy

tests to rule out certain functions. Convex combinations (linear combinations with




nonnegative coefficients summing to 1) of PD functions are PD. Products of PD
functions are PD. Functions PD in R are also PD in R” if D < d , indeed on any

subset of R¢. Self-convolutions of functions are PD. There are certain inequalities on
the values of correlation functions. A PD function is bounded by its value at the origin.
A lower bound on the value of a correlation function, depending on the dimension of the

space, also exists, e.g., C(s) >-0.403.. ford=2 and C(s) >-0.219.. for d=3.

Christakos [7] gives a review and a number of “criterion of permissibility” for
checking whether a candidate function is indeed a covariance function. Franke [12]
discusses some similar material, gives some ways of constructing PD functions and some
tests for determining whether functions are PD, and also gives the results of actual and
estimated errors resulting from the use of various correlation functions in some
simulations. Much of this material also appears in Franke, et al. [14]. Thiébaux and
Pedder [28] have some discussion of covariance models, and estimation of parameters.
Daley [9] discusses the problem of estimating covariance functions. Watkins [29]

considers the problem of estimating spatial covariance models, and in particular the

- problem of multimodality in maximum likelihood methods. Cressie [8] devotes

considerable space to the problem of estimating the spatial relationships of data,
generally approaching from the idea of using variograms rather than covariances, and
mostly concentrating on geological and mining data. Weber and Talkner [30] discuss PD
functions and investigate the question of whether certain functions proposed for use as
covariance functions are valid, with some negative results. Gaspari and Cohn [17]
discuss covariance functions and their properties and give some schemes for constructing
covariance functions with special properties, such as finite support. Ron and Sun discuss

positive definite function on spheres [20].

Almost all of the references in the previous paragraph concern isotropic and
homogeneous functions. While this is an important class of functions, it is probably
necessary to move beyond this class in numerical weather prediction applications. Some
of the references discuss covariance functions on the sphere, clearly an important idea as
objective analysis moves toward larger and larger volumes. From the fact that all

functions that are PD in 3-space are also PD on subsets, this seems a simple problem.




However, most references note that when distance in 3-space is replaced by geodesic

distance, the function may fail to be PD. In this case it is noted that geodesic distance
r¢ , (¢ is angle on the unit sphere) needs to be replaced by 2r sin% . It 1s generally not

noted in the references that this returns the measure of distance to that in 3-space (i.e.,

through the interior of the sphere).

A recent new approach to nonhomogeneous and nonisotropic covariance modeling
was proposed by Sampson and Guttorp [25]. While the precise manner in which the
process was carried out, and later modified by Smith [26] leaves some problems to be

solved, the basic idea seems rather attractive.

The question of how to generate nonhomogeneous covariance functions is
complicated in general because the characterization of such functions is in terms of
processes that are not easy to carry out. The characterization in terms of positive
definiteness (PD-ness) of the function (or the discretization of it for some points) is
mostly useful to show certain functions are not PD. The characterization in terms of the
Fourier transform is for isotropic functions, and requires the calculation of integrals that
may be impossible to carry out. In Sampson and Guttorp [25] the basic idea of a
transformation of the data is brought forth (although there the transformation is described
in terms of minimizing an error in the independent variables instead of the dependent
variable). While Smith [26] is a bit unclear in his description of the details of his process,
he is minimizing the error in the dependent variable. Both papers find the transformation
for a set of discrete points, and complete the map using thin plate spline interpolation/
approximation. In what follows I will propose simpler processes with considerably less

flexibility, and speculate about more flexible schemes.

The key idea that makes this a particularly interesting technique is that one can obtain
nonhomogeneous, nonisotropic correlation functions, that is, functions that are
guaranteed to be PD. The proof of PD-ness depends only on the fact that the
transformation is one-to-one (thus barring repeated points after the transformation when
none occurred in the original data) and that the transformed points are simply a set of

points in the transformed space of the same dimension as the original set of points, hence




the correlation matrix must still be PD. The simplified process discussed in Section 4 can
probably be implemented easily with significant potential benefit. For example, an

existing procedure may be made to fit a problem better with only a transformation of

variables.

2. The One Dimensional Case
In order to describe the ideas of the process easily, consider first the case of a set of
time series of data depending on one spatial variable. Suppose we have measurements of

the process at several points x,,Xx,,...,x,. Assume the x; are in increasing order and that

we have computed the correlation matrix with entries C(lx; —x;1) = C, ; for the data. We

now want to fit a correlation function F(d,{a,}) to approximate that data, where {q, } is

a set of parameters to be determined, and d represents distance in a transformed variable
with the transformation also being determined as part of the fitting process. Denote the

monotonicity preserving transformation as y = 7T'(x), with the points { x; } being mapped
to { y, }. The variables that define the transformation may in fact be the values y,,

although the transformation could depend on fewer variables. Note that some care is

needed to avoid dependency among the set of parameters {a, } defining the correlation

function, and the set of parameters defining the transformation. The remainder of the
process is simply to find those parameters by a minimization process. For example one
might use least squares methods and minimize the objective function

. i 2

Y > [fax-xl{ah-C,] (1)

i=1 j=I
over all parameters. This is a nonlinear problem, and the local minimum found by any
minimization software will depend on the initial guess, emphasizing the importance of
good initial guesses. Alternately the problem could be formulated to use a maximum
likelihood method if desired.

An example of an application of this process to the data given by Lonnberg and

Hollingsworth ([18] and [19]) is shown in Figures 1-4. The data used here is taken from

[19] as estimated from their Figure 10, which represents the correlation of the error in




forecast heights at various pressure levels. Figure 1 shows the forecast error correlation

data as a function of distance in the log(P) coordinate.
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Figure 1: Height error correlation from Lonnberg and Hollingsworth [19].

To fit the data, a second order autoregressive correlation function (plus constant) of

the form

F(d;a,c)=(1- c)(cos ad + smaad }“‘”’ +c 2)

was used. Here d represents distance in the transformed variable, T(x). Note that

including the parameter in the exponential would cause a dependency in the absence of a

constraint on the y, because the transformation already embodies scaling. Constraining
the { y, } to lie in [0,1] (say) would lead to problems of how to impose the necessary
constraints. If it seems desirable to have { y, } in [0,1], that scaling can be carried out a
posteriori. In order to enforce monotonicity of the y, and eliminate a translation
dependency, the parameters to be determined were taken to be {Jy,}", with y, =0and

Yia =Y, +10y; 1,i=1,...,n-1. Figure 2 shows the results of the calculation, including the




data and the fitted correlation function, now plotted as a function of distance in the

transformed variable. Note how the transformation has removed much of the “scatter”

from the data, especially at short distances.
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Figure 2: Height error correlation from Lonnberg and Hollingsworth [19] in the
transformed coordinate, with second order AR fit.

When plotted back in the original log(P) distance in Figure 3, we see the
nonhomogeneous, nonisotropic nature of the correlation functions (only four levels are
plotted here of the eight given by the data). This example was computed using Matlab',
using the function fmins to perform the optimization. To use the resulting correlation
function in objective analyses, it will be necessary to determine the transformation of any

point x to y =T(x). The first inclination would be to use cubic splines. Cubic splines

have continuous second derivatives and are straightforward to use.

! ® Registered trademark, The MathWorks, Natick, MA
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Figure 3: The vertical correlation function for height errors for various pressure

levels , with the data.

Figure 4 shows the spline function interpolating the points (x,,y;) that represents the

transformation T. On the down side, however, cubic splines are not necessarily

monotonic even when they are fit to data that have this property. If one continuous

derivative of the transformation (and hence, the resulting correlation function) is

sufficient, the monotonicity preserving piecewise cubic due to Fritsch and Carlson [16]

will suffice. If higher order smoothness is necessary, exponential splines (splines in

tension) can be used, although the selection of tension parameters is still something of an

art. Software is available (Renka, [23]) that will attempt to iteratively determine the

tension parameters to be as small as possible while still preserving monotonicty.
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Figure 4: Spline fit to the T(logP) transformation.

Now, suppose the transformation is defined in such a way as to depend on fewer

parameters than the n-1 used in the above example. It is as easily handled as above, and
in the same manner. Let the points {X; }';’zl be prescribed in the interval [x,,x,], and
now let the transformation be 7T : {X j} - {Yj }, with the parameters again being the
increments 6Y; with ¥, =0, and ¥},, =Y;+16Y, 1, j=1...,m~1. The only difference
from the previous application is that since calculation of the objective function requires
y, =T(x,), it is necessary to construct the interpolation function for each iteration of the

optimization process.

3. The Two Dimensional Case

In the two dimensional case treated by Sampson and Guttorp [25], and by Smith [26],
the transformation is defined by determining the points to which some subset of the data
points are transformed, and then the map is completed by using thin plate spline
interpolation/approximation. The details of exactly what has been done are sketchy.

Needless to say, the imposition of one-to-one is difficult, and in fact it appears that the




map given by Smith in Figure 4.3 is not one-to-one. The procedure given here will
guarantee a one-to-one map, while simplifying the transformation in one sense, although

the software that calculates the transformation does require an iterative process.

The idea is to proceed in a manner strictly analogous to the one-dimensional process

described in the previous section. Let the data locations be represented by { {(x,, y,)}1; .
Assume that the model to be fitis F(d,{a, }), and that d represents distance in the

transformed space T'(x, y). The transformation 7'(x, y) is determined by defining a
tensor product monotonicity preserving interpolation function 7. We could prescribe a

grid {(X .Y, )}ff':l ¥, overlying the region of interest (one that contains all the points
{(x;,¥:)}). The parameters that are used in the optimization process will be {du j }’jv;,‘

and {6v, },;' with u, =v; =0 and u,, =u,+18u,l,j=1..,N-1 and

Vg =V, +10v, L j =1, M -1.

The algorithm of Carlson and Fritsch [6] can be used to maintain monotonicity of the
function that interpolates on the grid. If it is important to maintain continuity of the
second derivative of the transformation, this technique will not work because the

interpolant only has continuous first derivatives.

From this point the process is basically the same as described above. The expression
to be minimized is the two dimensional version of Eq. (1), with the parameters in the

minimization process being the {a, }, the {du ;1 and {6v,}. As before, a maximum
likelihood method ‘formulation could be used if desired.

While this leads to a lot of control over the transformation, it also leads to merely
stretching in each of the two variables and does not allow for any “twisting” type of
behavior. Thus, while it would seem to be attractive, it does not embody enough
flexibility. The problem of determining a transformation that contains parameters
defined in such a way that the transformation will be one-to-one, and also has the
flexibility to transform the set of grid rectangles to quadrilaterals with no overlap is
unknown (to me) at this point. This is related to a process used in geography, imaging,

biology, and other disciplines, called “warping”; a look at some of their research (e.g.,




[3], [5], [1], [11]) has not yet revealed whether they have considered the one-to-one
problem associated with such transformations or whether they simply compute. Two
additional references that do define some one-to-one transformation are Fitzpatrick and
Leuze [10] where a polynomial transformation embodying nonlinear constraints on the
parameters, and Franke and Hagen [15] where a one-to-one transformation using a

biquadratic Bézier transformation with eleven free parameters is defined.

4. A Three Dimensional Case Under a Simpler Transformation

In meteorological problems, it may be sufficient to consider only the case of allowing
parameters determining the horizontal correlation functions to vary with height. This
would then be used in a product with the vertical correlation function to yield a partially
separable correlation function of the form

Cp(5)C,(d{a, (P)D) 3)
where s is distance in the vertical variable, and d is distance in the horizontal variables.
C, is envisioned as being obtained under the kind of transformation discussed in Section

2, but here we concentrate on the correlation function for the horizontal plane, C,. In

theory as well as for practical purposes, it would be necessary for the function (3) to be
PD in 3-space. To guarantee that the product would be PD in 3-space for arbitrary PD

C,, it is clear that C, would have to be positive semi-definite in 3-space. It is possible
that in practical problems, it might be permissible for C, to be non-PD, because the
product of C, and C, may still be PD, depending upon the function C,. Numerical

experiments have indicated that it may take a surprisingly small “nudge” from C, to

make the product with an non-PD C, turn out to be PD. This will be mentioned in

context later. -
The problem of investigating the PD properties of (3) is simplified by requiring that

C, be PD. To investigate whether (3) is PD through the Fourier transform seems

intractable. For many forms of C,, the integrals over the horizontal plane are possible,

10




even straightforward. However, the parameter(s) {q,} then enter into the final integral

over the vertical in complicated ways.

In applications, it will be necessary to have values of the parameters {a, (P)} for any

P, not just at discrete levels. Further, if any of the parameters are not associated with a
transformation of the particular P-plane, it is unclear how to enter those parameters into

the calculation of C, when two different P-values are involved. A simple example is

illuminating. Consider the special form of the second order autoregressive function,

4)

C,(d.{a(P),b(P)}) = [cos(a(P)d) , b(P)sin(a(P)d) }—b(i’)d

a(P)
with a(P)=0. This yields C,(d;b(P)) = (1+b(P)d)e™ ™. Note that b(P) depends on
P, and d represents distance in the horizontal plane.

As written, this expression is ambiguous since, in general, two P -values are involved

at the two points used to determine d . The obvious ploy of taking some average of

b(P)-values does not necessarily result in a PD function. It is unknown at present

whether there are conditions under which that might be possible.

For a known proper formulation it is necessary to go back to the basic representation
Cy(x,,¥:,x,,y,:b) = (+bd)e™, where again, d* = (x, -x)*+(y, - y,;)*. Wenow
think of first applying a transformation to the points (x;,y,,z;) so that the transformed
points are (X,,Y,,z,) = (b(P)x,,b(P.)y,,z;). Now, writing out the basic form of the
function applied to the transformed points, we see the expression in terms of the original
datais Cp (x;,¥;,%;,Y,:b(P,),b(P,)) = (1+R)e™® where
R? = (b(P)x, —b(P]. )xj)2 +(b(P)y, —b(P].)yj)z. That is to say, b(P)d is now replaced
by distance in the transformed coordinates. To define b(P) at all levels, a careful

interpolation scheme that does not overshoot and is monotonic in intervals in which it
should be monotonic can be used. An apparent potential problem is that R could be zero

for two different points. However, this can only happen for points that have two

different P -values (else the point is duplicated), and the vertical correlation function C,

11



will prevent difficulty. Of course, in the case of a fixed value of b, the original data
could have had repeated horizontal plane locations at different P values, so the

phenomenon has nothing to do with the transformations considered here.

This scheme appears attractive because repeated fitting of innovation data for
prediction height (say) at the various fixed levels would yield the parameter 5(P) and the
estimates of observation and prediction error at each level. Subsequently fitting data at
pairs of levels would yield the estimated values of the vertical observation error
correlation and the vertical prediction error correlation (note that by the assumption of the
form of the prediction error correlation made above, those would be the only quantities
estimated when fitting data from two separate levels). After the transformation, the
process is essentially that given by Hollingsworth and Lonnberg [18] with different

horizontal correlation functions.

The additive constant used in the one-dimensional example has been found to be
useful in practice (e.g., Barker [2]). An alternative that might achieve much of the same
result but yields a correlation function that still goes to zero at large distances was
proposed by Mitchell, et al. [21]. The idea was to add a second term of the same type but
with a slower decay rate. A fixed ratio of the coefficients of the two terms was imposed.
Either the additive constant or the latter idea would improve the fit. The possibility of
allowing different coefficients for the additive term at different levels again raises the
question of whether PD-ness would be maintained. As with b(P), if the additive
constant ¢(P) were used, a careful interpolation would need to be used for intermediate
levels. The question of how to handle the additive value for the correlation between
levels is open. A few numerical experiments confirm that an average value (either
geometric or arithmetic) seems to always result in a non-PD matrix. However, numerical
experiments also indicate that multiplication by a C, function, even one with a very slow
decay rate is sufficient to correct the problem, so provided the additive constants do not

vary too much, such problems may be insignificant.

The obvious next step is to attempt this process with the full generality of the second
order autoregressive correlation function. Making this work through the transformation

idea leads to difficulty as it seems not possible to work both parameters into the scheme

12




as transformations. Using a single value of the parameter a (after the transformation by

b(P) for all levels will give some additional flexibility and guarantee PD-ness.

We consider specifying the parameter a as a(P). Again, it may be possible that
certain restrictions on how the parameter a(P) in equation (4) varies with P relative to
b(P) could result in a PD function in the context of the above. It is noted that Weber and
Talkner [30] have shown that in the case when a and b are constants, the second order
autoregressive function is PD only when a’ <3b*. So, in general, (4) is not PD, but the
allowable values of a(P) in relation to b(P) is considerably more complicated than in
the case of fixed a and b, and will probably depend on the vertical correlation function
C,, as well. Another problem is in the precise way the parameters a(P) in the
denominator, and b(P) multiplying the sine term are handled because of the two

different P -values involved. Thinking in terms of transformations, and maintaining a
scheme that reduces to the proper expression when the points are at the same P -value

leads to

Rsin §

Cy(x;,y:.%,,y,,a(P),b(P,),a(P,),b(P,)) = (cosS + }‘R, where R is as given

above, and S* = (a(P)x, —a(P))x;)* +(a(P)y, —a(P,)y;)*.

Note that this brings a quotient of transformed distances into the expression to yield
R /S which replaces the b/a value. Certain combinations of a(P), b(P), and
observation locations do lead to non-PD matrices, and conditions on a(P) and b(P) to

prevent this are not apparent.

The relationship between points on different P -values is dependent on the assumed
coordinate system. A translation of the origin has no effect on a given level, however it
will change the interlevel relationships. In particular, the relative location of points on
different levels is altered by the translation. That is, the point that is transformed to the

origin will affect the results.

This is very unsatisfying, although it might be possible to use it to advantage by

setting the origin in some optimal way. One reasonable idea would be to transform the

13




center of the OI cell to the origin. A second alternative is to allow the parameters to vary
with the two levels. It is easy to demonstrate that although in general this does not
preserve PD-ness, when multiplied by a realistic vertical correlation function, the product

may. To be definite about what is proposed we note the horizontal correlation function
could be assumed to be of the form C, (d;a(P,Q)) = (1+b(P,Q)d)e™" " where P and
Q are the pressure levels for the two points and d is the horizontal distance between

them. This would be multiplied by the vertical correlation function as mentioned

previously. Additional work is required to determine the practical facts.

5. Alternatives to Simple Transformations

The advantage of having a family of horizontal correlation functions that depend
solely on a transformation varying with the P -level is compelling since that always
guarantees PD-ness. On the other hand, the problem of building enough parameters into
the transformation in order to adequately fit the data poses some difficulty. In the
simplest extension, different transformation constants in longitude and latitude would
yield an elliptical “equal distance” curve, which might be advantageous. Another
possibility is to allow a rotation followed by an (independent) scaling in the variables,
resulting in elliptical “equal distances” in the original variables, but now with the major
axis of the ellipse at an angle that differs with P. Whether one would want to do this
depends on how localized the correlation function calculation is to be. There would also
be questions of how to properly interpolate for intermediate levels. A second alternative
is to take the Lonnberg and Hollingsworth approach to modeling the correlation functions
as a convex combination of correlation functions with height varying coefficients. While

Lonnberg and Hollingsworth are fond of Bessel functions, one could use any other

family, say the special second order autoregressive family with fixed parameters b, for

all levels. In this case the horizontal correlation function would have the form

K
C,(d.{A,.b,}) =Y Al(1+bd)e™ for which the A, at each level would be found,
k=1

14




K
with the constraint ZAZ =1. Here the A, have been squared in the expression to
k=1

emphasize that they must be positive. From the discrete height values at which the A4,

are computed, one can now interpolate (carefully) for the values at other heights.
The above does not address the question of what form the horizontal correlation

function in 3 coordinates should take. The suggestion by Lonnberg and Hollingsworth is

not proper. Letting a second subscript on the A} denote a pressure level, they suggest

the coefficients /A7, A;, for the coefficients of the correlation function between levels

[ and L. The sum of these coefficients, being geometric averages of coefficients that
sum to one, is usually less than one, while an arithmetic average or weighted arithmetic
average would preserve the constraint. It is unknown whether such a function would then
be PD. Some experiments have been performed to investigate the matter empirically,
with pessimistic results. Further experiments are necessary to see if multiplication by the

vertical correlation function might restore PD-ness in realistic cases.

6. Miscellaneous

The scheme outlined by Hollingsworth and Lonnberg [18] for determining the vertical
correlations of observation error and prediction error involve the assumption of certain
correlation functions; in their case they were assumed to be the same for all levels. This
avoids complications mentioned in the previous section. However, if different
correlation functions are assumed for different levels, it is then necessary to assume some
correlation function for data at two distinct levels. This was done by Lénnberg and
Hollingsworth by assuming a particular kind of correlation function for the height
thickness errors. When the height error correlation functions vary from level to level, the
assumption of any form of correlation function for the thickness errors will lead to a
complicated form for the relation between height errors at two different levels. Unless all
work is performed in thickness errors instead of height errors, it seemed that it might be
better to work solely in height errors. Subsequent work by the author [13] has

demonstrated that the height-height errors have distinctly different behavior than that
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exhibited by the second order autoregressive function, while the thickness-thickness

errors are amenable to being fit by this function. ‘
On further reflection, the Lonnberg and Hollingsworth idea of using the geometric

mean of the coefficients probably arose from the process used to normalize a covariance

matrix to a correlation matrix. In that process each entry is divided by the geometric

mean of the diagonal element in its row and column. If they had done that, their scheme

would have resulted in an assumed correlation function of the form that was the square

root of the products of the correlation functions for the two levels involved. This seems

attractive when one recalls that the product of a matrix and its transpose is PD;(unless

singular). Unfortunately, the geometric mean is of the individual elements, not the matrix

and its transpose, and such a matrix is not, in general, PD.

7. Modeling Real Data
An effort is presently underway to apply some of the ideas put forth here to model real
data. The data is the innovation data (radiosonde observations minus forecast) for sixteen
pressure height levels over most of North America (latitude 25° to 65° North, and .
longitude 70° to 130° West) for the October-November 1996 time period. The objective

of the investigation is to determine a suitable correlation function structure that will
enable the estimation of the forecast and observation errors, and in particular the vertical
correlations. This effort could lead to more realistic modeling to be used during the
objective analysis phase of the data assimilation cycle. The most important questions are
the horizontal form of the covariance function, how the data is weighted in doing the
approximations at various levels, and the assumptions about the covariance function for
interlevel data. This requires investigating the data by looking at it in different ways
(e.g., interlevel pressure height innovations, or thicknesses?) to try to determine what
makes sense. In the case cited, assuming a form for one implies the form (a somewhat
complicated form unless all horizontal levels use the same parameters) for the other.
Some preliminary work has resulted in much of the software needed being now available.
The goal of this work is to derive a vertically varying correlation model that satisfies the
requisite PD-ness properties and incorporates an appropriate estimate of the vertically .

varying forecast and observation errors. The results of this study will be reported in [13].
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